Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Lancet Glob Health ; 11(5): e759-e769, 2023 05.
Article in English | MEDLINE | ID: covidwho-2298516

ABSTRACT

BACKGROUND: Several vaccine candidates are in development against MERS-CoV, which remains a major public health concern. In anticipation of available MERS-CoV vaccines, we examine strategies for their optimal deployment among health-care workers. METHODS: Using data from the 2013-14 Saudi Arabia epidemic, we use a counterfactual analysis on inferred transmission trees (who-infected-whom analysis) to assess the potential impact of vaccination campaigns targeting health-care workers, as quantified by the proportion of cases or deaths averted. We investigate the conditions under which proactive campaigns (ie vaccinating in anticipation of the next outbreak) would outperform reactive campaigns (ie vaccinating in response to an unfolding outbreak), considering vaccine efficacy, duration of vaccine protection, effectiveness of animal reservoir control measures, wait (time between vaccination and next outbreak, for proactive campaigns), reaction time (for reactive campaigns), and spatial level (hospital, regional, or national, for reactive campaigns). We also examine the relative efficiency (cases averted per thousand doses) of different strategies. FINDINGS: The spatial scale of reactive campaigns is crucial. Proactive campaigns outperform campaigns that vaccinate health-care workers in response to outbreaks at their hospital, unless vaccine efficacy has waned significantly. However, reactive campaigns at the regional or national levels consistently outperform proactive campaigns, regardless of vaccine efficacy. When considering the number of cases averted per vaccine dose administered, the rank order is reversed: hospital-level reactive campaigns are most efficient, followed by regional-level reactive campaigns, with national-level and proactive campaigns being least efficient. If the number of cases required to trigger reactive vaccination increases, the performance of hospital-level campaigns is greatly reduced; the impact of regional-level campaigns is variable, but that of national-level campaigns is preserved unless triggers have high thresholds. INTERPRETATION: Substantial reduction of MERS-CoV morbidity and mortality is possible when vaccinating only health-care workers, underlining the need for countries at risk of outbreaks to stockpile vaccines when available. FUNDING: UK Medical Research Council, UK National Institute for Health Research, UK Research and Innovation, UK Academy of Medical Sciences, The Novo Nordisk Foundation, The Schmidt Foundation, and Investissement d'Avenir France.


Subject(s)
Epidemics , Middle East Respiratory Syndrome Coronavirus , Humans , Vaccination , Health Personnel , Disease Outbreaks/prevention & control , Epidemics/prevention & control
2.
Journal of the Royal Statistical Society: Series A (Statistics in Society) ; 185(S1), 2022.
Article in English | Web of Science | ID: covidwho-2193233

ABSTRACT

We propose a new framework to model the COVID-19 epidemic of the United Kingdom at the local authority level. The model fits within a general framework for semi-mechanistic Bayesian models of the epidemic based on renewal equations, with some important innovations, including a random walk modelling the reproduction number, incorporating information from different sources, including surveys to estimate the time-varying proportion of infections that lead to reported cases or deaths, and modelling the underlying infections as latent random variables. The model is designed to be updated daily using publicly available data. We envisage the model to be useful for now-casting and short-term projections of the epidemic as well as estimating historical trends. The model fits are available on a public website: . The model is currently being used by the Scottish government to inform their interventions.

3.
Sci Rep ; 11(1): 16342, 2021 08 11.
Article in English | MEDLINE | ID: covidwho-1354114

ABSTRACT

The UK and Sweden have among the worst per-capita COVID-19 mortality in Europe. Sweden stands out for its greater reliance on voluntary, rather than mandatory, control measures. We explore how the timing and effectiveness of control measures in the UK, Sweden and Denmark shaped COVID-19 mortality in each country, using a counterfactual assessment: what would the impact have been, had each country adopted the others' policies? Using a Bayesian semi-mechanistic model without prior assumptions on the mechanism or effectiveness of interventions, we estimate the time-varying reproduction number for the UK, Sweden and Denmark from daily mortality data. We use two approaches to evaluate counterfactuals which transpose the transmission profile from one country onto another, in each country's first wave from 13th March (when stringent interventions began) until 1st July 2020. UK mortality would have approximately doubled had Swedish policy been adopted, while Swedish mortality would have more than halved had Sweden adopted UK or Danish strategies. Danish policies were most effective, although differences between the UK and Denmark were significant for one counterfactual approach only. Our analysis shows that small changes in the timing or effectiveness of interventions have disproportionately large effects on total mortality within a rapidly growing epidemic.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Health Policy , Models, Theoretical , COVID-19/therapy , Denmark/epidemiology , Humans , Sweden/epidemiology , United Kingdom/epidemiology
4.
Eur J Public Health ; 31(5): 1009-1015, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1345728

ABSTRACT

BACKGROUND: In response to the COVID-19 pandemic, governments across the globe have imposed strict social distancing measures. Public compliance to such measures is essential for their success, yet the economic consequences of compliance are unknown. This is the first study to analyze the effects of good compliance compared with poor compliance to a COVID-19 suppression strategy (i.e. lockdown) on work productivity. METHODS: We estimate the differences in work productivity comparing a scenario of good compliance with one of poor compliance to the UK government COVID-19 suppression strategy. We use projections of the impact of the UK suppression strategy on mortality and morbidity from an individual-based epidemiological model combined with an economic model representative of the labour force in Wales and England. RESULTS: We find that productivity effects of good compliance significantly exceed those of poor compliance and increase with the duration of the lockdown. After 3 months of the lockdown, work productivity in good compliance is £398.58 million higher compared with that of poor compliance; 75% of the differences is explained by productivity effects due to morbidity and non-health reasons and 25% attributed to avoided losses due to pre-mature mortality. CONCLUSION: Good compliance to social distancing measures exceeds positive economic effects, in addition to health benefits. This is an important finding for current economic and health policy. It highlights the importance to set clear guidelines for the public, to build trust and support for the rules and if necessary, to enforce good compliance to social distancing measures.


Subject(s)
COVID-19 , Pandemics , Communicable Disease Control , Government , Humans , SARS-CoV-2
6.
Sci Transl Med ; 13(602)2021 07 14.
Article in English | MEDLINE | ID: covidwho-1280393

ABSTRACT

We fitted a model of SARS-CoV-2 transmission in care homes and the community to regional surveillance data for England. Compared with other approaches, our model provides a synthesis of multiple surveillance data streams into a single coherent modeling framework, allowing transmission and severity to be disentangled from features of the surveillance system. Of the control measures implemented, only national lockdown brought the reproduction number (Rt eff) below 1 consistently; if introduced 1 week earlier, it could have reduced deaths in the first wave from an estimated 48,600 to 25,600 [95% credible interval (CrI): 15,900 to 38,400]. The infection fatality ratio decreased from 1.00% (95% CrI: 0.85 to 1.21%) to 0.79% (95% CrI: 0.63 to 0.99%), suggesting improved clinical care. The infection fatality ratio was higher in the elderly residing in care homes (23.3%, 95% CrI: 14.7 to 35.2%) than those residing in the community (7.9%, 95% CrI: 5.9 to 10.3%). On 2 December 2020, England was still far from herd immunity, with regional cumulative infection incidence between 7.6% (95% CrI: 5.4 to 10.2%) and 22.3% (95% CrI: 19.4 to 25.4%) of the population. Therefore, any vaccination campaign will need to achieve high coverage and a high degree of protection in vaccinated individuals to allow nonpharmaceutical interventions to be lifted without a resurgence of transmission.


Subject(s)
COVID-19 , Epidemics , Aged , Communicable Disease Control , England/epidemiology , Humans , SARS-CoV-2
7.
J Med Internet Res ; 23(6): e28253, 2021 06 02.
Article in English | MEDLINE | ID: covidwho-1202100

ABSTRACT

BACKGROUND: Before the advent of an effective vaccine, nonpharmaceutical interventions, such as mask-wearing, social distancing, and lockdowns, have been the primary measures to combat the COVID-19 pandemic. Such measures are highly effective when there is high population-wide adherence, which requires information on current risks posed by the pandemic alongside a clear exposition of the rules and guidelines in place. OBJECTIVE: Here we analyzed online news media coverage of COVID-19. We quantified the total volume of COVID-19 articles, their sentiment polarization, and leading subtopics to act as a reference to inform future communication strategies. METHODS: We collected 26 million news articles from the front pages of 172 major online news sources in 11 countries (available online at SciRide). Using topic detection, we identified COVID-19-related content to quantify the proportion of total coverage the pandemic received in 2020. The sentiment analysis tool Vader was employed to stratify the emotional polarity of COVID-19 reporting. Further topic detection and sentiment analysis was performed on COVID-19 coverage to reveal the leading themes in pandemic reporting and their respective emotional polarizations. RESULTS: We found that COVID-19 coverage accounted for approximately 25.3% of all front-page online news articles between January and October 2020. Sentiment analysis of English-language sources revealed that overall COVID-19 coverage was not exclusively negatively polarized, suggesting wide heterogeneous reporting of the pandemic. Within this heterogenous coverage, 16% of COVID-19 news articles (or 4% of all English-language articles) can be classified as highly negatively polarized, citing issues such as death, fear, or crisis. CONCLUSIONS: The goal of COVID-19 public health communication is to increase understanding of distancing rules and to maximize the impact of governmental policy. The extent to which the quantity and quality of information from different communication channels (eg, social media, government pages, and news) influence public understanding of public health measures remains to be established. Here we conclude that a quarter of all reporting in 2020 covered COVID-19, which is indicative of information overload. In this capacity, our data and analysis form a quantitative basis for informing health communication strategies along traditional news media channels to minimize the risks of COVID-19 while vaccination is rolled out.


Subject(s)
COVID-19/epidemiology , Data Mining/methods , Mass Media/statistics & numerical data , Public Health/methods , Social Media/statistics & numerical data , Health Resources , Humans , Pandemics , SARS-CoV-2/isolation & purification
8.
BMJ Open ; 11(4): e050346, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1199796

ABSTRACT

OBJECTIVE: To measure the effects of the tier system on the COVID-19 pandemic in the UK between the first and second national lockdowns, before the emergence of the B.1.1.7 variant of concern. DESIGN: This is a modelling study combining estimates of real-time reproduction number Rt (derived from UK case, death and serological survey data) with publicly available data on regional non-pharmaceutical interventions. We fit a Bayesian hierarchical model with latent factors using these quantities to account for broader national trends in addition to subnational effects from tiers. SETTING: The UK at lower tier local authority (LTLA) level. 310 LTLAs were included in the analysis. PRIMARY AND SECONDARY OUTCOME MEASURES: Reduction in real-time reproduction number Rt . RESULTS: Nationally, transmission increased between July and late September, regional differences notwithstanding. Immediately prior to the introduction of the tier system, Rt averaged 1.3 (0.9-1.6) across LTLAs, but declined to an average of 1.1 (0.86-1.42) 2 weeks later. Decline in transmission was not solely attributable to tiers. Tier 1 had negligible effects. Tiers 2 and 3, respectively, reduced transmission by 6% (5%-7%) and 23% (21%-25%). 288 LTLAs (93%) would have begun to suppress their epidemics if every LTLA had gone into tier 3 by the second national lockdown, whereas only 90 (29%) did so in reality. CONCLUSIONS: The relatively small effect sizes found in this analysis demonstrate that interventions at least as stringent as tier 3 are required to suppress transmission, especially considering more transmissible variants, at least until effective vaccination is widespread or much greater population immunity has amassed.


Subject(s)
COVID-19 , SARS-CoV-2 , Bayes Theorem , Communicable Disease Control , Humans , Pandemics , United Kingdom/epidemiology
9.
Science ; 372(6544): 815-821, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1186201

ABSTRACT

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/metabolism , Brazil/epidemiology , Epidemiological Monitoring , Genome, Viral , Genomics , Humans , Models, Theoretical , Molecular Epidemiology , Mutation , Protein Binding , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Viral Load
10.
Vaccine ; 39(22): 2995-3006, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1174521

ABSTRACT

The worldwide endeavour to develop safe and effective COVID-19 vaccines has been extraordinary, and vaccination is now underway in many countries. However, the doses available in 2021 are likely to be limited. We extend a mathematical model of SARS-CoV-2 transmission across different country settings to evaluate the public health impact of potential vaccines using WHO-developed target product profiles. We identify optimal vaccine allocation strategies within- and between-countries to maximise averted deaths under constraints on dose supply. We find that the health impact of SARS-CoV-2 vaccination depends on the cumulative population-level infection incidence when vaccination begins, the duration of natural immunity, the trajectory of the epidemic prior to vaccination, and the level of healthcare available to effectively treat those with disease. Within a country we find that for a limited supply (doses for < 20% of the population) the optimal strategy is to target the elderly. However, with a larger supply, if vaccination can occur while other interventions are maintained, the optimal strategy switches to targeting key transmitters to indirectly protect the vulnerable. As supply increases, vaccines that reduce or block infection have a greater impact than those that prevent disease alone due to the indirect protection provided to high-risk groups. Given a 2 billion global dose supply in 2021, we find that a strategy in which doses are allocated to countries proportional to population size is close to optimal in averting deaths and aligns with the ethical principles agreed in pandemic preparedness planning.


Subject(s)
COVID-19 , Vaccines , Aged , COVID-19 Vaccines , Humans , Models, Theoretical , Public Health , SARS-CoV-2 , Vaccination
11.
Nature ; 593(7858): 266-269, 2021 05.
Article in English | MEDLINE | ID: covidwho-1152860

ABSTRACT

The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England1, was first identified in the UK in late summer to early autumn 20202. Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 lineage during autumn 2020, suggesting that it has a selective advantage. Here we show that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with cases of B.1.1.7 including a larger share of under 20-year-olds than non-VOC cases. We estimated time-varying reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic data. The best-supported models did not indicate a substantial difference in VOC transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a substantial transmission advantage over other lineages, with a 50% to 100% higher reproduction number.


Subject(s)
COVID-19/transmission , COVID-19/virology , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Basic Reproduction Number , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , England/epidemiology , Evolution, Molecular , Genome, Viral/genetics , Humans , Infant , Infant, Newborn , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/genetics , Time Factors , Young Adult
12.
Nat Commun ; 12(1): 1090, 2021 02 17.
Article in English | MEDLINE | ID: covidwho-1087445

ABSTRACT

In response to the COVID-19 pandemic, countries have sought to control SARS-CoV-2 transmission by restricting population movement through social distancing interventions, thus reducing the number of contacts. Mobility data represent an important proxy measure of social distancing, and here, we characterise the relationship between transmission and mobility for 52 countries around the world. Transmission significantly decreased with the initial reduction in mobility in 73% of the countries analysed, but we found evidence of decoupling of transmission and mobility following the relaxation of strict control measures for 80% of countries. For the majority of countries, mobility explained a substantial proportion of the variation in transmissibility (median adjusted R-squared: 48%, interquartile range - IQR - across countries [27-77%]). Where a change in the relationship occurred, predictive ability decreased after the relaxation; from a median adjusted R-squared of 74% (IQR across countries [49-91%]) pre-relaxation, to a median adjusted R-squared of 30% (IQR across countries [12-48%]) post-relaxation. In countries with a clear relationship between mobility and transmission both before and after strict control measures were relaxed, mobility was associated with lower transmission rates after control measures were relaxed indicating that the beneficial effects of ongoing social distancing behaviours were substantial.


Subject(s)
COVID-19/transmission , Communicable Disease Control/methods , Pandemics/prevention & control , SARS-CoV-2/isolation & purification , Algorithms , COVID-19/epidemiology , COVID-19/virology , Communicable Disease Control/statistics & numerical data , Global Health , Humans , Models, Theoretical , Physical Distancing , Quarantine/methods , SARS-CoV-2/physiology
13.
J Travel Med ; 27(8)2020 12 23.
Article in English | MEDLINE | ID: covidwho-1059308
14.
Int J Infect Dis ; 102: 463-471, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-966658

ABSTRACT

OBJECTIVES: In this data collation study, we aimed to provide a comprehensive database describing the epidemic trends and responses during the first wave of coronavirus disease 2019 (COVID-19) throughout the main provinces in China. METHODS: From mid-January to March 2020, we extracted publicly available data regarding the spread and control of COVID-19 from 31 provincial health authorities and major media outlets in mainland China. Based on these data, we conducted descriptive analyses of the epidemic in the six most-affected provinces. RESULTS: School closures, travel restrictions, community-level lockdown, and contact tracing were introduced concurrently around late January but subsequent epidemic trends differed among provinces. Compared with Hubei, the other five most-affected provinces reported a lower crude case fatality ratio and proportion of critical and severe hospitalised cases. From March 2020, as the local transmission of COVID-19 declined, switching the focus of measures to the testing and quarantine of inbound travellers may have helped to sustain the control of the epidemic. CONCLUSIONS: Aggregated indicators of case notifications and severity distributions are essential for monitoring an epidemic. A publicly available database containing these indicators and information regarding control measures is a useful resource for further research and policy planning in response to the COVID-19 epidemic.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2 , COVID-19/prevention & control , China/epidemiology , Contact Tracing , Databases, Factual , Humans
15.
Nat Commun ; 11(1): 6189, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-960314

ABSTRACT

As of 1st June 2020, the US Centres for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly model the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We use changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. We estimate that Rt was only below one in 23 states on 1st June. We also estimate that 3.7% [3.4%-4.0%] of the total population of the US had been infected, with wide variation between states, and approximately 0.01% of the population was infectious. We demonstrate good 3 week model forecasts of deaths with low error and good coverage of our credible intervals.


Subject(s)
COVID-19/epidemiology , Pandemics/statistics & numerical data , Bayes Theorem , COVID-19/transmission , Humans , Models, Statistical , United States/epidemiology , Virus Diseases/epidemiology
16.
BMC Med ; 18(1): 321, 2020 10 09.
Article in English | MEDLINE | ID: covidwho-840743

ABSTRACT

BACKGROUND: After experiencing a sharp growth in COVID-19 cases early in the pandemic, South Korea rapidly controlled transmission while implementing less stringent national social distancing measures than countries in Europe and the USA. This has led to substantial interest in their "test, trace, isolate" strategy. However, it is important to understand the epidemiological peculiarities of South Korea's outbreak and characterise their response before attempting to emulate these measures elsewhere. METHODS: We systematically extracted numbers of suspected cases tested, PCR-confirmed cases, deaths, isolated confirmed cases, and numbers of confirmed cases with an identified epidemiological link from publicly available data. We estimated the time-varying reproduction number, Rt, using an established Bayesian framework, and reviewed the package of interventions implemented by South Korea using our extracted data, plus published literature and government sources. RESULTS: We estimated that after the initial rapid growth in cases, Rt dropped below one in early April before increasing to a maximum of 1.94 (95%CrI, 1.64-2.27) in May following outbreaks in Seoul Metropolitan Region. By mid-June, Rt was back below one where it remained until the end of our study (July 13th). Despite less stringent "lockdown" measures, strong social distancing measures were implemented in high-incidence areas and studies measured a considerable national decrease in movement in late February. Testing the capacity was swiftly increased, and protocols were in place to isolate suspected and confirmed cases quickly; however, we could not estimate the delay to isolation using our data. Accounting for just 10% of cases, individual case-based contact tracing picked up a relatively minor proportion of total cases, with cluster investigations accounting for 66%. CONCLUSIONS: Whilst early adoption of testing and contact tracing is likely to be important for South Korea's successful outbreak control, other factors including regional implementation of strong social distancing measures likely also contributed. The high volume of testing and the low number of deaths suggest that South Korea experienced a small epidemic relative to other countries. Caution is needed in attempting to replicate the South Korean response in populations with larger more geographically widespread epidemics where finding, testing, and isolating cases that are linked to clusters may be more difficult.


Subject(s)
Betacoronavirus , Contact Tracing/methods , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Quarantine/methods , Bayes Theorem , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Contact Tracing/trends , Coronavirus Infections/diagnosis , Disease Outbreaks/prevention & control , Humans , Pneumonia, Viral/diagnosis , Quarantine/trends , Republic of Korea/epidemiology , SARS-CoV-2
17.
Lancet Glob Health ; 8(9): e1132-e1141, 2020 09.
Article in English | MEDLINE | ID: covidwho-641159

ABSTRACT

BACKGROUND: COVID-19 has the potential to cause substantial disruptions to health services, due to cases overburdening the health system or response measures limiting usual programmatic activities. We aimed to quantify the extent to which disruptions to services for HIV, tuberculosis, and malaria in low-income and middle-income countries with high burdens of these diseases could lead to additional loss of life over the next 5 years. METHODS: Assuming a basic reproduction number of 3·0, we constructed four scenarios for possible responses to the COVID-19 pandemic: no action, mitigation for 6 months, suppression for 2 months, or suppression for 1 year. We used established transmission models of HIV, tuberculosis, and malaria to estimate the additional impact on health that could be caused in selected settings, either due to COVID-19 interventions limiting activities, or due to the high demand on the health system due to the COVID-19 pandemic. FINDINGS: In high-burden settings, deaths due to HIV, tuberculosis, and malaria over 5 years could increase by up to 10%, 20%, and 36%, respectively, compared with if there was no COVID-19 pandemic. The greatest impact on HIV was estimated to be from interruption to antiretroviral therapy, which could occur during a period of high health system demand. For tuberculosis, the greatest impact would be from reductions in timely diagnosis and treatment of new cases, which could result from any prolonged period of COVID-19 suppression interventions. The greatest impact on malaria burden could be as a result of interruption of planned net campaigns. These disruptions could lead to a loss of life-years over 5 years that is of the same order of magnitude as the direct impact from COVID-19 in places with a high burden of malaria and large HIV and tuberculosis epidemics. INTERPRETATION: Maintaining the most critical prevention activities and health-care services for HIV, tuberculosis, and malaria could substantially reduce the overall impact of the COVID-19 pandemic. FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust, UK Department for International Development, and Medical Research Council.


Subject(s)
Coronavirus Infections/epidemiology , Developing Countries , HIV Infections/prevention & control , Health Services Accessibility , Malaria/prevention & control , Pandemics , Pneumonia, Viral/epidemiology , Tuberculosis/prevention & control , COVID-19 , HIV Infections/epidemiology , HIV Infections/mortality , Humans , Malaria/epidemiology , Malaria/mortality , Models, Theoretical , Tuberculosis/epidemiology , Tuberculosis/mortality
SELECTION OF CITATIONS
SEARCH DETAIL